A NOTE ON DYNAMO ACTION AT ASYMPTOTICALLY SMALL EKMAN NUMBER

Citation
Mr. Walker et al., A NOTE ON DYNAMO ACTION AT ASYMPTOTICALLY SMALL EKMAN NUMBER, Geophysical and astrophysical fluid dynamics (Print), 88(3-4), 1998, pp. 261-275
Citations number
20
Categorie Soggetti
Geochemitry & Geophysics","Astronomy & Astrophysics",Mechanics
ISSN journal
03091929
Volume
88
Issue
3-4
Year of publication
1998
Pages
261 - 275
Database
ISI
SICI code
0309-1929(1998)88:3-4<261:ANODAA>2.0.ZU;2-Z
Abstract
The physically realistic value of the Ekman number in the Earth's core is E approximate to 10(-15) which is much smaller than E approximate to 10(-4) achieved in the self-consistent numerical models of the geod ynamo. More recent models have used hyperdiffusivity to reduce E to ap proximate to 10(-6). We derive the dispersion relation for MHD waves i n an unbound domain and show that, as E --> 0, small scale rapidly osc illating waves develop which can cause numerical instability. We numer ically time step the magnetostrophic (E = 0) dynamo equations in the m ore realistic geometry of a sphere and confirm the existence of these waves. We show that hyperdiffusivity damps out the waves. Finally we d iscuss the results with reference to the use of this technique in nume rical investigations of the geodynamo problem.