The KLS isoperimetric conjecture for generalized Orlicz balls.

Citation
V. Kolesnikov, Alexander et Milman, Emanuel, The KLS isoperimetric conjecture for generalized Orlicz balls., Annals of probability (Online) , 46(6), 2018, pp. 3578-3615
ISSN journal
2168894X
Volume
46
Issue
6
Year of publication
2018
Pages
3578 - 3615
Database
ACNP
SICI code
Abstract
What is the optimal way to cut a convex bounded domain K in Euclidean space (Rn,|.|) into two halves of equal volume, so that the interface between the two halves has least surface area? A conjecture of Kannan, Lovász and Simonovits asserts that, if one does not mind gaining a universal numerical factor (independent of n) in the surface area, one might as well dissect K using a hyperplane. This conjectured essential equivalence between the former nonlinear isoperimetric inequality and its latter linear relaxation, has been shown over the last two decades to be of fundamental importance to the understanding of volume-concentration and spectral properties of convex domains. In this work, we address the conjecture for the subclass of generalized Orlicz balls K={x.Rn;.i=1nVi(xi).E}, confirming its validity for certain levels E.R under a mild technical assumption on the growth of the convex functions Vi at infinity [without which we confirm the conjecture up to a log(1+n) factor]. In sharp contrast to previous approaches for tackling the KLS conjecture, we emphasize that no symmetry is required from K. This significantly enlarges the subclass of convex bodies for which the conjecture is confirmed.