Feng, Jin et al., Small-time asymptotics for fast mean-reverting stochastic volatility models, Annals of applied probability , 22(4), 2012, pp. 1541-1575
In this paper, we study stochastic volatility models in regimes where the maturity is small, but large compared to the mean-reversion time of the stochastic volatility factor. The problem falls in the class of averaging/homogenization problems for nonlinear HJB-type equations where the .fast variable. lives in a noncompact space. We develop a general argument based on viscosity solutions which we apply to the two regimes studied in the paper. We derive a large deviation principle, and we deduce asymptotic prices for out-of-the-money call and put options, and their corresponding implied volatilities. The results of this paper generalize the ones obtained in Feng, Forde and Fouque [SIAM J. Financial Math. 1 (2010) 126.141] by a moment generating function computation in the particular case of the Heston model.