Poissonian statistics in the extremal process of branching Brownian motion

Citation
Arguin, Louis-pierre et al., Poissonian statistics in the extremal process of branching Brownian motion, Annals of applied probability , 22(4), 2012, pp. 1693-1711
ISSN journal
10505164
Volume
22
Issue
4
Year of publication
2012
Pages
1693 - 1711
Database
ACNP
SICI code
Abstract
As a first step toward a characterization of the limiting extremal process of branching Brownian motion, we proved in a recent work [Comm. Pure Appl. Math. 64 (2011) 1647.1676] that, in the limit of large time t, extremal particles descend with overwhelming probability from ancestors having split either within a distance of order 1 from time 0, or within a distance of order 1 from time t. The result suggests that the extremal process of branching Brownian motion is a randomly shifted cluster point process. Here we put part of this picture on rigorous ground: we prove that the point process obtained by retaining only those extremal particles which are also maximal inside the clusters converges in the limit of large t to a random shift of a Poisson point process with exponential density. The last section discusses the Tidal Wave Conjecture by Lalley and Sellke [Ann. Probab. 15 (1987) 1052.1061] on the full limiting extremal process and its relation to the work of Chauvin and Rouault [Math. Nachr. 149 (1990) 41.59] on branching Brownian motion with atypical displacement.