We study a class of nonlinear nonparametric inverse problems. Specifically, we propose a nonparametric estimator of the dynamics of a monotonically increasing trajectory defined on a finite time interval. Under suitable regularity conditions, we show that in terms of L²-loss, the optimal rate of convergence for the proposed estimator is the same as that for the estimation of the derivative of a function. We conduct simulation studies to examine the finite sample behavior of the proposed estimator and apply it to the Berkeley growth data.