ON MARGINAL SLICED INVERSE REGRESSION FOR ULTRAHIGH DIMENSIONAL MODEL-FREE FEATURE SELECTION

Citation
Zhou Yu et al., ON MARGINAL SLICED INVERSE REGRESSION FOR ULTRAHIGH DIMENSIONAL MODEL-FREE FEATURE SELECTION, Annals of statistics , 44(6), 2016, pp. 2594-2623
Journal title
ISSN journal
00905364
Volume
44
Issue
6
Year of publication
2016
Pages
2594 - 2623
Database
ACNP
SICI code
Abstract
Model-free variable selection has been implemented under the sufficient dimension reduction framework since the seminal paper of Cook [Ann. Statist. 32 (2004) 1062-1092]. In this paper, we extend the marginal coordinate test for sliced inverse regression (SIR) in Cook (2004) and propose a novel marginal SIR utility for the purpose of ultrahigh dimensional feature selection. Two distinct procedures, Dantzig selector and sparse precision matrix estimation, are incorporated to get two versions of sample level marginal SIR utilities. Both procedures lead to model-free variable selection consistency with predictor dimensionality P diverging at an exponential rate of the sample size n. As a special case of marginal SIR, we ignore the correlation among the predictors and propose marginal independence SIR. Marginal independence SIR is closely related to many existing independence screening procedures in the literature, and achieves model-free screening consistency in the ultrahigh dimensional setting. The finite sample performances of the proposed procedures are studied through synthetic examples and an application to the small round blue cell tumors data.