Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis.

Citation
R. Korenberg, J. et al., Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis., American journal of human genetics , 50-I(2), 1992, pp. 294-302
ISSN journal
00029297
Volume
50-I
Issue
2
Year of publication
1992
Pages
294 - 302
Database
ACNP
SICI code
Abstract
Down syndrome (DS) is a major cause of congenital heart and gut disease and mental retardation. DS individuals also have characteristic facies, hands, and dermatoglyphics, in addition to abnormalities of the immune system, an increased risk of leukemia, and an Alzheimer-like dementia. Although their molecular basis is unknown, recent work on patients with DS and partial duplications of chromosome 21 has suggested small chromosomal regions located in band q22 that are likely to contain the genes for some of these features. We now extend these analyses to define molecular markers for the congenital heart disease, the duodenal stenosis, and an "overlap" region for the facial and some of the skeletal features. We report the clinical, cytogenetic, and molecular analysis of two patients. The first is DUP21JS, who carries both a partial duplication of chromosome 21, including the region 21q21.1-q22.13, or proximal q22.2, and DS features including duodenal stenosis. Using quantitative Southern blot dosage analysis and 15 DNA sequences unique to chromosome 21, we have defined the molecular extent of the duplication. This includes the region defined by DNA sequences for APP (amyloid precursor protein), SOD1 (CuZn superoxide dismutase), D21S47, SF57, D21S17, D21S55, D21S3, and D21S15 and excludes the regions defined by DNA sequences for D21S16, D21S46, D21S1, D21S19, BCE I (breast cancer estrogen-inducible gene), D21S39, and D21S44. Using similar techniques, we have also defined the region duplicated in the second case occurring in a family carrying a translocation associated with DS and congenital heart disease. This region includes DNA sequences for D21S55 and D21S3 and excludes DNA sequences for D21S47 and D21S17.These studies provide the molecular basis for the construction of a DS pheno-typic map and focus the search for genes responsible for the physical features, congenital heart disease, and duodenal stenosis of DS.