Hk. Mcdowell et Am. Clogston, MOLECULAR TIME-SCALE GENERALIZED LANGEVIN EQUATION THEORY AND POLYNOMIAL MAXIMUM-ENTROPY IMAGING OF SPECTRAL DENSITIES, The Journal of chemical physics, 109(19), 1998, pp. 8249-8261
Molecular time scale generalized Langevin equation (MTGLE) theory is d
iscussed as an approach to condensed phase dynamics. A polynomial maxi
mum entropy (MaxEnt) process for imaging required MTGLE spectral densi
ties based on knowledge of the moments of the spectral density is intr
oduced. The process is based on the use of interpolation polynomials w
hich serve both to image the spectral density as well as provide a num
erical procedure to compute the inverse Hessian matrix in a Newton-typ
e minimization. A default model is added to allow for the inclusion of
additional information in forming the image. The polynomial MaxEnt im
aging process is found to be a fast, numerically stable, computational
procedure which produces images comparable in quality to images obtai
ned by other imaging processes. The polynomial MaxEnt imaging process
is examined in the context of imaging MTGLE bath spectral densities wi
th special emphasis on a coupled linear chain model. Standard harmonic
oscillator, Hamiltonian bath models such as Ohmic-exponential and Ohm
ic-Gaussian are shown to possess regions of parameter space for which
the MTGLE adiabatic frequency is imaginary. When the adiabatic frequen
cy is zero, it is shown that imaging of the friction kernel is the bes
t approach. (C) 1998 American Institute of Physics. [S0021-9606(98)515
43-7].