Genomewide Linkage Analysis for Internal Carotid Artery Intimal Medial Thickness: Evidence for Linkage to Chromosome 12

Citation
S. Fox, Caroline et al., Genomewide Linkage Analysis for Internal Carotid Artery Intimal Medial Thickness: Evidence for Linkage to Chromosome 12, American journal of human genetics , 74(2), 2004, pp. 253-261
ISSN journal
00029297
Volume
74
Issue
2
Year of publication
2004
Pages
253 - 261
Database
ACNP
SICI code
Abstract
Carotid intimal medial thickness (IMT) is a heritable quantitative measure of atherosclerosis. A genomewide linkage analysis was conducted to localize a quantitative-trait locus (QTL) influencing carotid IMT. Carotid IMT was measured in 596 men and 629 women from 311 extended families (1,242 sib pairs) in the Framingham Heart Study Offspring cohort. B-mode carotid ultrasonography was used to define mean IMT of the carotid artery segments. Multipoint variance-component linkage analysis was performed. Evidence for significant linkage to internal carotid artery (ICA) IMT (two-point log odds [LOD] score 4.1, multipoint LOD score 3.4) was found 161 cM from the tip of the short arm of chromosome 12; these results were confirmed using the GENEHUNTER package (multipoint LOD score 4.3). No LOD scores >2.0 were observed for common carotid artery (CCA) IMT. Association analysis of a single-nucleotide.polymorphism variant of SCARB1 (minor allele frequency 0.13), a gene in close proximity to the region of peak linkage, revealed a protective association of the missense variant allele in exon 1 of SCARB1, with decreased ICA IMT compared with subjects homozygous for the common allele. Although the exon 1 variant contributed 2% to overall variation in ICA IMT, there was no significant change in the peak LOD score after adjustment in the linkage analyses. These data provide substantial evidence for a QTL on chromosome 12 influencing ICA IMT and for association of a rare variant of SCARB1, or a nearby locus, with ICA IMT. Because this rare SCARB1 variant does not account for our observed linkage, further investigations are warranted to identify additional candidate-gene variants on chromosome 12 predisposing to atherosclerosis phenotypes and clinical vascular disease.