Lower bound for quantum integration error on anisotropic Sobolev classes

Authors
Citation
Ye, Pei Xin, Lower bound for quantum integration error on anisotropic Sobolev classes, Acta mathematica Sinica. English series (Print) , 26(4), 2010, pp. 669-678
ISSN journal
14398516
Volume
26
Issue
4
Year of publication
2010
Pages
669 - 678
Database
ACNP
SICI code
Abstract
We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class .(W r p ([0, 1]d)) (r . . d+ ). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hölder-Nikolskii class .(H r. ([0, 1]d)) and Sobolev class B(W r. ([0, 1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms.