In this article, we study a particular example of general random tessellation, the dead leaves model. This model, first studied by the mathematical morphology school, is defined as a sequential superimposition of random closed sets, and provides the natural tool to study the occlusion phenomenon, an essential ingredient in the formation of visual images. We generalize certain results of G. Matheron and, in particular, compute the probability of n compact sets being included in visible parts. This result characterizes the distribution of the boundary of the dead leaves tessellation.