J. Heunis, Andrew et Labbé, Chantal, Convex duality in constrained mean-variance portfolio optimization, Advances in applied probability , 39(1), 2007, pp. 77-104
We apply conjugate duality to establish the existence of optimal portfolios in an asset-allocation problem, with the goal of minimizing the variance of the final wealth which results from trading over a fixed, finite horizon in a continuous-time, complete market, subject to the constraints that the expected final wealth equal a specified target value and the portfolio of the investor (defined by the dollar amount invested in each stock) take values in a given closed, convex set. The asset prices are modelled by Itô processes, for which the market parameters are random processes adapted to the information filtration available to the investor. We synthesize a dual optimization problem and establish a set of optimality relations, similar to the Euler-Lagrange and transversality relations of calculus of variations, giving necessary and sufficient conditions for the given optimization problem and its dual to each have a solution, with zero duality gap. We then solve these relations, to establish the existence of an optimal portfolio.