Generalizing Swendsen–Wang for image analysis

Citation
Barbu, Adrian et Zhu, Song-chun, Generalizing Swendsen–Wang for image analysis, Journal of computational and graphical statistics , 16(4), 2007, pp. 877-900
ISSN journal
10618600
Volume
16
Issue
4
Year of publication
2007
Pages
877 - 900
Database
ACNP
SICI code
Abstract
Markov chain Monte Carlo (MCMC) methods have been used in many fields (physics, chemistry, biology, and computer science) for simulation, inference, and optimization. In many applications, Markov chains are simulated for sampling from target probabilities π(X) defined on graphs G. The graph vertices represent elements of the system, the edges represent spatial relationships, while X is a vector of variables on the vertices which often take discrete values called labels or colors. Designing efficient Markov chains is a challenging task when the variables are strongly coupled. Because of this, methods such as the single-site Gibbs sampler often experience suboptimal performance. A well-celebrated algorithm, the Swendsen–Wang (SW) method, can address the coupling problem. It clusters the vertices as connected components after turning off some edges probabilistically, and changes the color of one cluster as a whole. It is known to mix rapidly under certain conditions. Unfortunately, the SW method has limited applicability and slows down in the presence of “external fields;” for example, likelihoods in Bayesian inference. In this article, we present a general cluster algorithm that extends the SW algorithm to general Bayesian inference on graphs. We focus on image analysis problems where the graph sizes are in the order of 103–106 with small connectivity. The edge probabilities for clustering are computed using discriminative probabilities from data. We design versions of the algorithm to work on multi grid and multilevel graphs, and present applications to two typical problems in image analysis, namely image segmentation and motion analysis. In our experiments, the algorithm is at least two orders of magnitude faster (in CPU time) than the single-site Gibbs sampler.