FINITE LOCAL MONODROMY OF OVERCONVERGENT UNIT-ROOT F-ISOCRYSTALS ON ACURVE

Authors
Citation
N. Tsuzuki, FINITE LOCAL MONODROMY OF OVERCONVERGENT UNIT-ROOT F-ISOCRYSTALS ON ACURVE, American journal of mathematics, 120(6), 1998, pp. 1165-1190
Citations number
12
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
00029327
Volume
120
Issue
6
Year of publication
1998
Pages
1165 - 1190
Database
ISI
SICI code
0002-9327(1998)120:6<1165:FLMOOU>2.0.ZU;2-M
Abstract
We prove that the category of p-adic continuous representations of a f undamental group of a curve over a perfect field of a positive charact eristic p with finite local monodromy is equivalent to that of overcon vergent unit-root F-isocrystals on the curve. To show the equivalence of categories, we study the local theory and apply it to the global ca se.