A-PRIORI AND A-POSTERIORI ERROR-BOUNDS FOR A NONCONFORMING LINEAR FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW

Authors
Citation
Wz. Bao et Jw. Barrett, A-PRIORI AND A-POSTERIORI ERROR-BOUNDS FOR A NONCONFORMING LINEAR FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW, Modelisation mathematique et analyse numerique, 32(7), 1998, pp. 843-858
Citations number
18
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
0764583X
Volume
32
Issue
7
Year of publication
1998
Pages
843 - 858
Database
ISI
SICI code
0764-583X(1998)32:7<843:AAAEFA>2.0.ZU;2-I
Abstract
We consider a nonconforming linens finite element approximation of a n on-Newtonian flow, where the viscosity obeys a Carreau type law for a pseudo-plastic. We prove optimal a priori error bounds for both the ve locity and pressure. In addition we present a posteriori error estimat ors, which are based on the local evaluation of the residuals. These y ield global upper and local lower bounds for the error. Finally, we pe rform some numerical experiments, which confirm our a priori error bou nds. (C) Elsevier, Paris.