GEOMETRICAL WELL-POSED SYSTEMS FOR THE EINSTEIN EQUATIONS

Citation
Y. Choquetbruhat et Jw. York, GEOMETRICAL WELL-POSED SYSTEMS FOR THE EINSTEIN EQUATIONS, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 321(8), 1995, pp. 1089-1095
Citations number
5
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
07644442
Volume
321
Issue
8
Year of publication
1995
Pages
1089 - 1095
Database
ISI
SICI code
0764-4442(1995)321:8<1089:GWSFTE>2.0.ZU;2-H
Abstract
We show that, given an arbitrary shift, the lapse N cap be chosen so t hat the extrinsic curvature K of the space slices with metric ($) over bar g of a solution of Einstein's equations satisfies a quasilinear w ave equation. We give a geometrical first order symmetric hyperbolic s ystem verified in vacuum by ($) over bar g, K and N. We show that one can also obtain a quasi-linear wave equation for K by requiring N to s atisfy at each time an elliptic equation which fixes the value of the mean extrinsic curvature of the space slices.