Aj. Blake et al., Mixed aza-thia crowns containing the 1,10-phenanthroline subunit. Substitution reactions in [NiL(MeCN)][BF4](2) {L=2,5,8-trithia[9](2,9)-1,10-phenanthrolinophane}, J CHEM S DA, (7), 1999, pp. 1085-1092
Citations number
53
Categorie Soggetti
Inorganic & Nuclear Chemistry
Journal title
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
The substitution reactions of the co-ordinated acetonitrile molecule in [Ni
L(MeCN)][BF4](2) 1 (L = 2,5,8-trithia-[9](2,9)-1,10-phenanthrolinophane) wi
th different anionic and neutral ligands L' [Cl-, Br-, I-, CN-, SCN-, H2O,
pyridine (py), aniline tan), 1, 3-dimethyl-4-imidazoline-2-thione (etu) or
1,3-dimethyl-4-imidazoline-2-selone (eseu)] have been studied by using elec
tronic spectroscopy. While the reaction with all the anionic ligands is qua
ntitative, for the neutral ones an equilibrium takes place; the correspondi
ng equilibrium constants have been determined in MeCN at 25 degrees C. The
complex cations [NiL(L')]((2 - n)+) (n = 0 for neutral and 1 for anionic li
gands) have also been isolated in the solid state, mainly as BF4- salts and
the compounds [NiL(H2O)[ClO4](2) . H2O, [NiL(Cl)]Cl . H2O, [NiL(SCN)]BF4 .
MeNO2, [NiL(eseu)][BF4](2) and [NiL(py)][BF4](2) have been characterized b
y X-ray diffraction studies. In these complexes a distorted octahedral geom
etry is achieved at the Ni-II with five sites occupied by the macrocyclic l
igand L and the sixth by the appropriate ligand L'. The electrochemistry of
all the prepared compounds has been studied by cyclic voltammetry. In part
icular the reductive cyclic voltammetry of 1 in acetonitrile shows a quasi-
reversible one-electro n reduction wave near E-1(1/2) = - 1.0 V vs. Fc/Fc(). Electrochemical reduction by con trolled-potential electrolysis at this
potential in the presence of the axial ligand PMe3 and investigation of the
reduced product by ESR spectroscopy confirm the reduction process to be me
tal based and to correspond to the formation of the [(NiL)-L-I](+) species.