A finite set of generators for the Kauffman bracket skein algebra

Authors
Citation
D. Bullock, A finite set of generators for the Kauffman bracket skein algebra, MATH Z, 231(1), 1999, pp. 91-101
Citations number
6
Categorie Soggetti
Mathematics
Journal title
MATHEMATISCHE ZEITSCHRIFT
ISSN journal
00255874 → ACNP
Volume
231
Issue
1
Year of publication
1999
Pages
91 - 101
Database
ISI
SICI code
0025-5874(199905)231:1<91:AFSOGF>2.0.ZU;2-S
Abstract
If F is a compact orientable surface it is known that the Kauffman bracket skein module of F x I has a multiplicative structure. Our central result is the construction of a finite set of knots which generate the module as an algebra. We can then define an integer valued invariant of compact orientab le 3-manifolds which characterizes S-3.