An in situ study of the annealing behaviour of BiSCCO Ag tapes

Citation
T. Frello et al., An in situ study of the annealing behaviour of BiSCCO Ag tapes, SUPERCOND S, 12(5), 1999, pp. 293-300
Citations number
24
Categorie Soggetti
Apllied Physucs/Condensed Matter/Materiales Science
Journal title
SUPERCONDUCTOR SCIENCE & TECHNOLOGY
ISSN journal
09532048 → ACNP
Volume
12
Issue
5
Year of publication
1999
Pages
293 - 300
Database
ISI
SICI code
0953-2048(199905)12:5<293:AISSOT>2.0.ZU;2-Y
Abstract
The phase transformations and structural changes occurring during initial h eating and annealing of an Ag-clad high-T-c superconducting tape of the (Bi , Pb)(2)Sr2Ca2Cu3Ox type are investigated. The annealing takes place in air at an operating temperature of 835 degrees C. Using x-ray diffraction with 100 keV photons from a synchrotron source the concentration, stoichiometry and texture of the dominant phases are monitored in situ during the transf ormation of BiSCCO from (Bi, Pb)(2)Sr2CaCu2Ox, (2212) to (Bi, Pb)(2)Sr2Ca2C u3Ox, (2223). In addition, information on grain size and residual strain is obtained. During heating the (Ca, Sr)(2)PbO4 additive decomposes between 7 00 degrees C and 820 degrees C. Simultaneously, the residual strain in the 2212 grains is relieved and the c-axis alignment of the grains is substanti ally improved. Moreover, the Pb content of the 2212 structure increases con tinuously. We interpret these results as being related to a temperature-dep endent solubility limit of Pb in 2212, leading to a substantial grain growt h of the phase. Above 812 degrees C 2212 partly decomposes to form (Ca, Sr) (2)CuO3 and a liquid. At the operating temperature 2212 and (Ca, Sr)(2)CuO3 react with the liquid to form 2223. During the conversion the 2212 lattice expands, indicating that the remaining 2212 grains contain less and less P b. The final 2212 and 2223 textures are approximately identical, and Avrami plots of the transformation kinetics give exponents m in the range 1 < m < 2. During the annealing the 2212 linewidth is constant, implying that ther e is neither strain nor finite-size broadening of the 2212 peaks during the transformation. This points to a transformation mechanism where only a few 2212 grains transform at a given time. Implications of these findings are discussed in relation to intercalation and nucleation-and-growth models.