Corrected finite difference eigenvalues of periodic Sturm-Liouville problems

Authors
Citation
Dj. Condon, Corrected finite difference eigenvalues of periodic Sturm-Liouville problems, APPL NUM M, 30(4), 1999, pp. 393-401
Citations number
18
Categorie Soggetti
Mathematics
Journal title
APPLIED NUMERICAL MATHEMATICS
ISSN journal
01689274 → ACNP
Volume
30
Issue
4
Year of publication
1999
Pages
393 - 401
Database
ISI
SICI code
0168-9274(199907)30:4<393:CFDEOP>2.0.ZU;2-6
Abstract
Computation of eigenvalues of regular Sturm-Liouville problems with periodi c boundary conditions is considered. We show that a proof similar to that g iven by Andrew (1989) can be used to prove that a correction technique appl ied to a finite difference scheme given by Vanden Berghe et al. (1995) redu ces the error in the kth eigenvalue estimate from O(k(4)h(2)) to O(kh(2)), where h is the uniform mesh length. We also provide a significantly shorter proof of a slightly weaker result. (C) 1999 Elsevier Science B.V. and IMAC S. All rights reserved.