A version of Pitman's 2M-X theorem for geometric Brownian motions

Citation
H. Matsumoto et M. Yor, A version of Pitman's 2M-X theorem for geometric Brownian motions, CR AC S I, 328(11), 1999, pp. 1067-1074
Citations number
13
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
328
Issue
11
Year of publication
1999
Pages
1067 - 1074
Database
ISI
SICI code
0764-4442(19990601)328:11<1067:AVOP2T>2.0.ZU;2-M
Abstract
We show that geometric Brownian motion with parameter mu, i.e., the exponen tial of linear Brownian motion with drift mu, divided by its quadratic vari ation process is a diffusion process. Taking logarithms and an appropriate scaling limit, we recover the Rogers-Pitman extension to Brownian motion wi th drift of Pitman's representation theorem for the three-dimensional Besse l process. Time inversion and generalized inverse Gaussian distributions pl ay crucial roles in our proofs. (C) Academie des Sciences/Elsevier, Paris.