Compound Poisson approximation in total variation

Citation
Ad. Barbour et S. Utev, Compound Poisson approximation in total variation, STOCH PR AP, 82(1), 1999, pp. 89-125
Citations number
10
Categorie Soggetti
Mathematics
Journal title
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
ISSN journal
03044149 → ACNP
Volume
82
Issue
1
Year of publication
1999
Pages
89 - 125
Database
ISI
SICI code
0304-4149(199907)82:1<89:CPAITV>2.0.ZU;2-A
Abstract
Poisson approximation in total variation can be successfully established in a wide variety of contexts, involving sums of weakly dependent random vari ables which usually take the value 0, and occasionally the value 1. If the random variables can take other positive integer values, or if there is str onger dependence between them, compound Poisson approximation may be more s uitable. Stein's method, which is so effective in the Poisson context, turn s out to be much more difficult to apply for compound Poisson approximation , because the solutions of the Stein equation have undesirable properties. In this paper, we prove new bounds on the absolute values of the solutions to the Stein equation and of their first differences, over certain ranges o f their arguments. These enable compound Poisson approximation in total var iation to be carried out with almost the same efficiency as in the Poisson case. Even for sums of independent random variables, which have been exhaus tively studied in the past, new results are obtained, effectively solving a problem discussed by Le Cam (1965, Bernoulli, Bayes, Laplace. Springer, Ne w York, pp. 179-202), in the context of nonnegative integer valued random v ariables. (C) 1999 Elsevier Science B.V. All rights reserved.