Maps and twists relating U(s1(2)) and the nonstandard U-h(sl(2)): Unified construction

Citation
B. Abdesselam et al., Maps and twists relating U(s1(2)) and the nonstandard U-h(sl(2)): Unified construction, MOD PHY L A, 14(12), 1999, pp. 765-777
Citations number
10
Categorie Soggetti
Physics
Journal title
MODERN PHYSICS LETTERS A
ISSN journal
02177323 → ACNP
Volume
14
Issue
12
Year of publication
1999
Pages
765 - 777
Database
ISI
SICI code
0217-7323(19990420)14:12<765:MATRUA>2.0.ZU;2-V
Abstract
A general construction is given for a class of invertible maps between the classical U(sl(2)) and the Jordanian U-h(sl(2)) algebras. Here the role of the maps is studied in the context of construction of twist operators relat ing the cocommutative and non-cocommutative coproducts of the U(sl(2)) and U-h(sl(2)) algebras respectively. It is shown that a particular map called the "minimal twist map" implements the simplest twist given directly by the factorized form of the Rh matrix of Ballesteros-Herranz. For a "non-minima l" map the twist has an additional factor obtainable in terms of the simila rity transformation relating the map in question to the minimal one. Our ge neral prescription may be used to evaluate the series expansion in powers o f h of the twist operator corresponding to an arbitrary "non-minimal" map. The classical and the Jordanian antipode maps may also be interrelated by s uitable similarity transformations.