Extendability of large-scale Lipschitz maps

Authors
Citation
U. Lang, Extendability of large-scale Lipschitz maps, T AM MATH S, 351(10), 1999, pp. 3975-3988
Citations number
11
Categorie Soggetti
Mathematics
Journal title
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00029947 → ACNP
Volume
351
Issue
10
Year of publication
1999
Pages
3975 - 3988
Database
ISI
SICI code
0002-9947(199910)351:10<3975:EOLLM>2.0.ZU;2-H
Abstract
Let X, Y be metric spaces, S a subset of X, and f:S --> Y a large-scale lip schitz map. It is shown that f possesses a large-scale lipschitz extension (f) over bar (f) over bar: X --> Y (with possibly larger constants) if Y is a Gromov hyperbolic geodesic space or the cartesian product of finitely ma ny such spaces. No extension exists, in general, if Y is an infinite-dimens ional Hilbert space. A necessary and sufficient condition for the extendabi lity of a lipschitz map f : S --> Y is given in the case when X is separabl e and Y is a proper, convex geodesic space.