A Harris and Segal theorem for exceptional rings of algebraic integers

Authors
Citation
H. Hamraoui, A Harris and Segal theorem for exceptional rings of algebraic integers, CR AC S I, 328(12), 1999, pp. 1107-1112
Citations number
7
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
328
Issue
12
Year of publication
1999
Pages
1107 - 1112
Database
ISI
SICI code
0764-4442(19990615)328:12<1107:AHASTF>2.0.ZU;2-H
Abstract
Let K be a number field, O-K the ring of the integers of K, l a prime integ er and Z((l)) the localisation of Z at l. Hart-is and Segal [4] proved that there exists infinitely many primes p of O-K such that the natural morphis m K-i(O-K) x Z((l)) --> K-i (O-K/p) x Z((l)) in algebraic K-theory is split surjective for i > 0, except if l = 2 and K is exceptional. In this Note, we prove that the Harris-Segal theorem is still true for l = 2 in the excep tional case, if we replace algebraic K-theory by orthogonal K-theory define d by Karoubi [5]. Thanks to [3], we can then determine a direct summand of the 2-torsion of KOn(O-K). (C) Academie des Sciences/Elsevier, Paris.