Conformal conjugacies in Baker domains

Authors
Citation
H. Konig, Conformal conjugacies in Baker domains, J LOND MATH, 59, 1999, pp. 153-170
Citations number
33
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
ISSN journal
00246107 → ACNP
Volume
59
Year of publication
1999
Part
1
Pages
153 - 170
Database
ISI
SICI code
0024-6107(199902)59:<153:CCIBD>2.0.ZU;2-H
Abstract
Let F be a meromorphic function in the complex plane. We investigate the be haviour of the iterates of F in a Baker domain B. In particular, we describ e the dynamics of the orbits with the help of conformal conjugacies; that i s, we determine a function yl which is univalent in a large simply connecte d subdomain of B such that phi(F(z)) = T(phi(z)) holds throughout B. Here T is either a parabolic or hyperbolic Mobius transformation mapping either a half plane or C onto itself. This functional equation is always solvable i n a Baker domain if F has only finitely many poles. Moreover, there is an e xample of a function with infinitely many poles where one cannot find an ap propriate conformal conjugacy in an invariant Baker domain.