Algebraic solutions for the asymmetric rotor

Citation
F. Pan et Jp. Draayer, Algebraic solutions for the asymmetric rotor, ANN PHYSICS, 275(2), 1999, pp. 224-237
Citations number
34
Categorie Soggetti
Physics
Journal title
ANNALS OF PHYSICS
ISSN journal
00034916 → ACNP
Volume
275
Issue
2
Year of publication
1999
Pages
224 - 237
Database
ISI
SICI code
0003-4916(19990801)275:2<224:ASFTAR>2.0.ZU;2-Z
Abstract
Exact algebraic solutions for the energy eigenvalues and eigenstates of the asymmetric rotor are found using an infinite-dimensional algebraic method. The theory exploits a mapping from the Jordan-Schwinger realization of the SO(3) similar to SU(2) algebra to a complementary SU(1, 1) structure. The Bethe ansatz solutions that emerge are shown to display the intrinsic Viere rgruppe (D-2) symmetry of the rotor when the angular quantum number I is an integer, and the intrinsic quaternion group Q (i.e., the double group D-2* ) symmetry when I is a half integer. (C) 1999 Academic Press.