On analytic factorization of positive hermitian matrix functions over the bidisc

Authors
Citation
G. Blower, On analytic factorization of positive hermitian matrix functions over the bidisc, LIN ALG APP, 295(1-3), 1999, pp. 149-158
Citations number
11
Categorie Soggetti
Mathematics
Journal title
LINEAR ALGEBRA AND ITS APPLICATIONS
ISSN journal
00243795 → ACNP
Volume
295
Issue
1-3
Year of publication
1999
Pages
149 - 158
Database
ISI
SICI code
0024-3795(19990701)295:1-3<149:OAFOPH>2.0.ZU;2-C
Abstract
Let Omega:T-2 --> M-N(C) be a positive hermitian (Omega greater than or equ al to 0) matrix-valued function on the bitorus with integral integral(T2) l og det Omega > -infinity and integral integral(T2) parallel to Omega parall el to < infinity. Then Omega is the L-1-limit of FjFj*, where F-j is a (N x N-j) rectangular bi-analytic matrix function. A continuous and strictly po sitive hermitian Omega:T-2 --> M-N may be factored as FF* with F an N x inf inity analytic operator function. (C) 1999 Elsevier Science Inc. All rights reserved.