Period polynomials and congruences for Hecke algebras

Authors
Citation
W. Hohnen, Period polynomials and congruences for Hecke algebras, P EDIN MATH, 42, 1999, pp. 217-224
Citations number
7
Categorie Soggetti
Mathematics
Journal title
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY
ISSN journal
00130915 → ACNP
Volume
42
Year of publication
1999
Part
2
Pages
217 - 224
Database
ISI
SICI code
0013-0915(199906)42:<217:PPACFH>2.0.ZU;2-O
Abstract
Using the Eichler-Shimura isomorphism and the action of the Hecke operator T-2 on period polynomials, we shall give a simple and new proof of the foll owing result (implicitly contained in the literature): let f be a normalize d Hecke eigenform of weight k with respect to the full modular group with e igenvalues lambda(p) under the usual Hecke operators T-p (p a prime). Let K -f be the field generated over Q by the lambda(p) for all p. Let P be a pri me of K-f lying above 5. Then lambda 2 not equal 0 (mod P). 1991 Mathematics subject classification. 11F.