Diophantine inequalities for polynomial rings

Authors
Citation
Cn. Hsu, Diophantine inequalities for polynomial rings, J NUMBER TH, 78(1), 1999, pp. 46-61
Citations number
15
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF NUMBER THEORY
ISSN journal
0022314X → ACNP
Volume
78
Issue
1
Year of publication
1999
Pages
46 - 61
Database
ISI
SICI code
0022-314X(199909)78:1<46:DIFPR>2.0.ZU;2-J
Abstract
We study the Hardy-Littlewood method for the Laurent series field F-q((1/T) ) over the finite field F-q with q elements. We show that if lambda(1), lam bda(2), lambda(3) are non-zero elements in F-q((1/T)) satisfying lambda(1)/ lambda(2) is not an element of F-q(T) and sgn(lambda(1)) + sgn(lambda(2)) + sgn(lambda(3)) = 0, then the values of the sum lambda(1)P(1) + lambda(2)P(2) + lambda(3)P(3), as P-i (i = 1, 2, 3) run independently through all monic irreducible polyno mials in F-q[T], are everywhere dense on the "non-Archimedean" line F-q((1/ T)), where sgn(f) is an element of F-q denotes the leading coefficient of f is an element of F-q((1/T)). (C) 1999 Academic Press.