On the Arnold conjecture and the Atiyah-Patodi-Singer index theorem

Citation
M. Miettinen et Aj. Niemi, On the Arnold conjecture and the Atiyah-Patodi-Singer index theorem, PHYS LETT B, 461(1-2), 1999, pp. 89-94
Citations number
13
Categorie Soggetti
Physics
Journal title
PHYSICS LETTERS B
ISSN journal
03702693 → ACNP
Volume
461
Issue
1-2
Year of publication
1999
Pages
89 - 94
Database
ISI
SICI code
0370-2693(19990819)461:1-2<89:OTACAT>2.0.ZU;2-F
Abstract
The Arnold conjecture yields a lower bound to the number of periodic classi cal trajectories in a Hamiltonian system. Here we count these trajectories with the help of a path integral, which we inspect using properties of the spectral flow of a Dirac operator in the background of a Sp(2N) valued gaug e field. We compute the spectral flow from the Atiyah-Patodi-Singer index t heorem, and apply the results to evaluate the path integral using localizat ion methods. In this manner we find a lower bound to the number of periodic classical trajectories which is consistent with the Arnold conjecture. (C) 1999 Published by Elsevier Science B.V. All rights reserved.