Analytic properties of Euler products of Igusa-type zeta functions and subgroup growth of nilpotent groups

Citation
M. Du Sautoy et F. Grunewald, Analytic properties of Euler products of Igusa-type zeta functions and subgroup growth of nilpotent groups, CR AC S I, 329(5), 1999, pp. 351-356
Citations number
16
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
329
Issue
5
Year of publication
1999
Pages
351 - 356
Database
ISI
SICI code
0764-4442(19990901)329:5<351:APOEPO>2.0.ZU;2-Y
Abstract
We prove asymptotic results for the number of subgroups of index at most n is an element of N in a finitely generated nilpotent group Gamma. These are obtained by applying a Tauberian theorem to the zeta-function of Gamma. To be able to do this we show that this Dirichlet series and also certain Eul er products which arise from local Igusa-type p-adic integrals can be merom orphically continued past their abscissa of convergence. (C) 1999 Academie des Sciences/Editions scientifiques et medicales Elsevier SAS.