Energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations

Citation
J. Duchon et R. Robert, Energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, CR AC S I, 329(3), 1999, pp. 243-248
Citations number
10
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
329
Issue
3
Year of publication
1999
Pages
243 - 248
Database
ISI
SICI code
0764-4442(19990801)329:3<243:EDFWSO>2.0.ZU;2-N
Abstract
We study the local energy equation for weak solutions of 3D incompressible Euler and Navier-Stokes equations. We introduce a dissipation term coming f rom an eventual lack of regularity in the solution. We use this local energ y equation to give a simple proof of Onsager's conjecture, slightly improvi ng the hypothesis given in [1]. We propose a new notion, of dissipative sol ution for such weak solutions. (C) Academie des Sciences/Elsevier, Paris.