On series of translates of positives functions

Citation
Z. Buczolich et al., On series of translates of positives functions, CR AC S I, 329(4), 1999, pp. 261-264
Citations number
5
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
329
Issue
4
Year of publication
1999
Pages
261 - 264
Database
ISI
SICI code
0764-4442(19990815)329:4<261:OSOTOP>2.0.ZU;2-V
Abstract
Given f : R --> R+ and Lambda discrete in R+ we denote by C(f, Lambda), res p. D(f, Lambda), the x-set where the series Sigma f(x + lambda) (lambda is an element of Lambda) converges, resp. diverges. The sets Lambda break into two types. Type 1 consists of Lambda such that the Lebesgue measure of eit her C(f, Lambda) or D(f, Lambda) vanishes whatever f measurable, and type 2 consists of all the other Lambda. Buczolich and Mauldin proved that {log n } (n = 1, 2,...) is of type 2. Type 2 is generic, type 1 is rare, and we gi ve examples of both cases (Theorems 1, 2, 3). (C) 1999 Academie des Science s / Editions scientifiques et medicales Elsevier SAS.