Sympathoinhibitory function of the alpha(2A)-adrenergic receptor subtype

Citation
Kp. Makaritsis et al., Sympathoinhibitory function of the alpha(2A)-adrenergic receptor subtype, HYPERTENSIO, 34(3), 1999, pp. 403-407
Citations number
19
Categorie Soggetti
Cardiovascular & Respiratory Systems","Cardiovascular & Hematology Research
Journal title
HYPERTENSION
ISSN journal
0194911X → ACNP
Volume
34
Issue
3
Year of publication
1999
Pages
403 - 407
Database
ISI
SICI code
0194-911X(199909)34:3<403:SFOTAR>2.0.ZU;2-W
Abstract
Presynaptic alpha(2)-adrenergic receptors (alpha(2)-AR) are distributed thr oughout the central nervous system and are highly concentrated in the brain stem, where they contribute to neural baroreflex control of blood pressure (BP). To explore the role of the alpha(2A)-AR subtype in this function, we compared BP and plasma norepinephrine and epinephrine levels in geneticall y engineered mice with deleted alpha(2A)-AR gene to their wild-type control s. At baseline, the alpha(2A)-AR gene knockouts (n=11) versus controls (n=1 0) had higher systolic BP (123+/-2.5 versus 115+/-2.5 mm Hg, P<0.05), heart rate (730+/-15 versus 600+/-18 b/min, P<0.001), and norepinephrine (1.005/-0.078 versus 0.587+/-0.095 ng/mL, P<0.01), respectively. When submitted t o subtotal nephrectomy and given 1% saline as drinking water, both alpha(2A )-AR gene knockouts (n=14) and controls (n=14) became hypertensive, but the former required 15.6+/-2.5 days versus 29.3+/-1.4 days for the controls (P <0.001). End-point systolic BP was similar for both at 155+/-2.1 versus 152 +/-5.2 mm Hg, but norepinephrine and epinephrine levels were twice as high in the knockouts at 1.386+/-0.283 and 0.577+/-0.143 versus 0.712+/-0.110 an d 0.255+/-0.032 ng/mL, respectively, P<0.05 for both; We conclude that the alpha(2A)-AR subtype exerts a sympathoinhibitory effect, and its loss leads to a hypertensive, hyperadrenergic state.