M. Cardillo et al., Predicting mammal species richness and distributions: testing the effectiveness of satellite-derived land cover data, LANDSC ECOL, 14(5), 1999, pp. 423-435
Mapping species richness and distributions is an important aspect of conser
vation and land use planning, but the time and cost of producing maps from
field surveys is prohibitive. It is useful, therefore, if mappable environm
ental variables, from a readily accessible source, can be used as surrogate
s for species attributes. We evaluated the power of satellite-derived land
cover information, from the Land Cover Map of Great Britain, to predict spe
cies richness and occurrences of terrestrial mammals in one hundred 10 x 10
km quadrats, from four regions of Britain. The predictive power of the lan
d cover data was relatively poor - with a few exceptions, land cover explai
ned less than half of the variation in mammal species richness and occurren
ce in regression models. Predictive power was considerably stronger when re
gions were analyzed separately than when analyzed together, and best fittin
g models varied between regions and between mammal taxa. Predictive power w
as also affected (positively or negatively depending on taxon) when PCA-ord
inated land cover variables were used as predictors. The predictive strengt
h of the land cover data was probably limited mostly by the high proportion
of British mammal species with geographic distributions changing rapidly a
nd independently of land cover (and hence the non-saturation of preferred h
abitats), and to a lesser extent by shortcomings in the mammal and land cov
er data, and the influence of landscape factors other than land cover on ma
mmal distributions. The results suggest that regional stratification is ess
ential when attempting to predict species richness and distributions, even
across relatively limited areas such as Great Britain. We conclude that cau
tion is necessary in using results from environmental information systems s
uch as this as a basis for conservation and land use planning decisions.