The infinity-eigenvalue problem

Citation
P. Juutinen et al., The infinity-eigenvalue problem, ARCH R MECH, 148(2), 1999, pp. 89-105
Citations number
9
Categorie Soggetti
Mathematics,"Mechanical Engineering
Journal title
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
ISSN journal
00039527 → ACNP
Volume
148
Issue
2
Year of publication
1999
Pages
89 - 105
Database
ISI
SICI code
0003-9527(1999)148:2<89:TIP>2.0.ZU;2-P
Abstract
The Euler-Lagrange equation of the nonlinear Rayleigh quotient (integral(Omega) /del u\\(p) dx) /(integral(Omega) /u\(p) dx) is -div (/del u\(p-2)del u) = Lambda(p)(p/)u\(p-2)u, where Lambda(p)(p) is the minimum value of the quotient. The limit as p --> infinity of these equations is found to be max {Lambda(infinity) - /del u(x)\/u(x), Delta(infinity)u(x) } = 0, where the constant Lambda(infinity) = lim(p-->infinity) Lambda p is the rec iprocal of the maximum of the distance to the boundary of the domain Omega.