Asymptotic behavior of Sobolev-type orthogonal polynomials on the unit circle

Citation
Af. Moreno et al., Asymptotic behavior of Sobolev-type orthogonal polynomials on the unit circle, J APPROX TH, 100(2), 1999, pp. 345-363
Citations number
12
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF APPROXIMATION THEORY
ISSN journal
00219045 → ACNP
Volume
100
Issue
2
Year of publication
1999
Pages
345 - 363
Database
ISI
SICI code
0021-9045(199910)100:2<345:ABOSOP>2.0.ZU;2-4
Abstract
We study the asymptotic behavior of the sequence of polynomials orthogonal with respect to the discrete Sobolev inner product on the unit circle. < f, g > = integral(0)(2 pi) f(e(i theta)) <(g(e(i theta)))over bar>d theta (0) + f(Z) Ag(Z)(H), where f(Z)=(f(z(1)), ...,f((l1))(z(1)), ..., f(z(m)), ...,f((lm))(z(m))), A is a M x M positive definite matrix or a positive semidefinite diagonal bl ock matrix, M = l(1) + ... + l(m) + m, d mu belongs to a certain class of m easures, and \z(i)\ > 1, i = 1,2, ..., m. (C) 1999 Academic Press.