Uniform error estimates for an exponentially fitted finite element method for singularly perturbed elliptic equations

Authors
Citation
W. Dorfler, Uniform error estimates for an exponentially fitted finite element method for singularly perturbed elliptic equations, SIAM J NUM, 36(6), 1999, pp. 1709-1738
Citations number
25
Categorie Soggetti
Mathematics
Journal title
SIAM JOURNAL ON NUMERICAL ANALYSIS
ISSN journal
00361429 → ACNP
Volume
36
Issue
6
Year of publication
1999
Pages
1709 - 1738
Database
ISI
SICI code
0036-1429(19991027)36:6<1709:UEEFAE>2.0.ZU;2-Y
Abstract
We consider a linear singularly perturbed elliptic equation on (0, 1) (2). In a recent paper [W. Dorfler, SIAM J. Numer. Anal., 36 (1999), pp. 1878-19 00] we proved uniform (in the perturbation parameter) estimates for solutio ns and an abstract a priori error estimate. Now we show, for some examples, that one can achieve uniform error estimates on a rectangular mesh using e xponentially fitted finite elements. These are constructed as tensor produc ts from solutions of local one-dimensional constant coefficient problems. E stimates are obtained in the L-2-norm and, assuming discrete stability, als o in the L-infinity-norm.