Eisenman intrinsic measures and algebraic invariants

Authors
Citation
S. Kaliman, Eisenman intrinsic measures and algebraic invariants, INDI MATH J, 48(2), 1999, pp. 449-467
Citations number
14
Categorie Soggetti
Mathematics
Journal title
INDIANA UNIVERSITY MATHEMATICS JOURNAL
ISSN journal
00222518 → ACNP
Volume
48
Issue
2
Year of publication
1999
Pages
449 - 467
Database
ISI
SICI code
0022-2518(199922)48:2<449:EIMAAI>2.0.ZU;2-S
Abstract
We generalize the Sakai theorem that says that every complex algebraic mani fold of general type is measure hyperbolic. We introduce the notion of k-me asure hyperbolicity for every Eisenman k-measure and, following Sakai, we c onsider an analogue <(kappa)over bar>k of the Kodaira logarithmic dimension which construction uses logarithmic k-forms. We show that a complex algebr aic manifold is k-measure hyperbolic if <(kappa)over bar>k(X) = dimX.