The center of the enveloping algebra and the Campbell-Hausdorff formula

Authors
Citation
M. Vergne, The center of the enveloping algebra and the Campbell-Hausdorff formula, CR AC S I, 329(9), 1999, pp. 767-772
Citations number
5
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
329
Issue
9
Year of publication
1999
Pages
767 - 772
Database
ISI
SICI code
0764-4442(19991101)329:9<767:TCOTEA>2.0.ZU;2-D
Abstract
Let g be a Lie algebra. In this Note, we define g-valued functions F(x, y) and G(x, y) on g + g, such that x + y - log(e(x)e(y)) = (e(ad) (x) - 1)F(x, y) + (1 - e(-ad) (y))G(x, y). Furthermore, if g is a quadratic Lie algebra , we prove an identity for the trace of the matrix (ad x) partial derivativ e(x)F + (ad y)partial derivative(y)G. This identity was conjectured in [4] for any Lie algebra g, and proved when a is a soh,able Lie algebra. This re sult implies (see [4]) that Duflo's isomorphism [2] extends naturally to co nvolution algebras of invariant distributions on the group G and the Lie al gebra a. (C) 1999 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.