We combine information on cosmological parameters from cluster abundances,
CMB primordial anisotropies and the IRAS 1.2-Jy galaxy redshift survey. We
take as free parameters the present values of the total matter density of t
he universe, Omega(m), the Hubble parameter, h, the linear theory rms fluct
uations in the matter density within 8 h(-1) Mpc spheres, sigma(8), and the
IRAS biasing factor, b(IRAS). We assume that the universe is spatially fla
t, with a cosmological constant, and that structure formed from adiabatic i
nitial fluctuations with a Harrison-Zel'dovich power spectrum (i.e. the pri
mordial spectral index n = 1). The nucleosynthesis value for the baryonic m
atter density Omega(b) = 0.019/h(2) is adopted. We use the full three- and
four-dimensional likelihood functions for each data set and marginalize the
se to two- and one-dimensional distributions in a Bayesian way, integrating
over the other parameters. It is shown that the three data sets are in exc
ellent agreement, with a best-fitting point of Omega(m) = 1-Omega(Lambda) =
0.36, h = 0.54, sigma(8) = 0.74, and b(IRAS) = 1.08. This point is within
one sigma of the minimum for each data set alone. Pairs of these data sets
have their degeneracies in sufficiently different directions that using onl
y two data sets at a time is sufficient to place good constraints on the co
smological parameters. We show that the results from each of the three poss
ible pairings of the data are also in good agreement. Finally, we combine a
ll three data sets to obtain marginalized 68 per cent confidence intervals
of 0.30 < Omega(m) < 0.43, 0.48 < h < 0.59, 0.69 < sigma(8) < 0.79, and 1.0
1 < b(IRAS) < 1.16. For the best-fitting parameters the CMB quadrupole is Q
(rms-ps) = 18.0 mu K, the shape parameter of the mass power spectrum is Gam
ma = 0.15, the baryon density is Omega(b) = 0.066 and the age of the univer
se is 16.7 Gyr.