We study the question whether a possible metastable vacuum state is actuall
y populated in a phase transition in the early universe, as is usually assu
med in the discussion of vacuum stability bounds e.g. for Standard Model pa
rameters. A phenomenological (3 + 1)-dimensional Langevin equation is solve
d numerically for a toy model with a potential motivated by the finite temp
erature 1-loop effective potential of the Standard Model including addition
al non-renormalizable operators from an effective theory for physics beyond
the Standard Model and a time dependent temperature. It turns out that whe
ther the metastable vacuum is populated depends critically on the value of
the phenomenological parameter eta for small scalar couplings. For large en
ough scaler couplings and with our specific form of the non-renormalizable
operators the system (governed by the Langevin equation) always ends up in
the metastable minimum. (C) 1999 Published by Elsevier Science B.V. All rig
hts reserved.