U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

Citation
Jn. Aleinikoff et al., U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA, PRECAMB RES, 99(1-2), 2000, pp. 113-146
Citations number
46
Categorie Soggetti
Earth Sciences
Journal title
PRECAMBRIAN RESEARCH
ISSN journal
03019268 → ACNP
Volume
99
Issue
1-2
Year of publication
2000
Pages
113 - 146
Database
ISI
SICI code
0301-9268(20000115)99:1-2<113:UGOZAM>2.0.ZU;2-L
Abstract
Mesoproterozoic granitic gneisses comprise most of the basement of the nort hern Blue Ridge geologic province in Virginia and Maryland. Lithology, stru cture, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 +/- 6 Ma), hornblende monzonite gneiss (1149+/-19 Ma), porphyroblastic gra nite gneiss (1144+/-2 Ma), coarse-grained metagranite (about 1140 Ma), and chamockite (>1145 Ma?). These gneisses contain three Proterozoic deformatio nal fabrics. Because of complex U-Pb systematics due to extensive overgrowt hs on magmatic cores, zircons from hornblende monzonite gneiss were dated u sing the sensitive high-resolution ion microprobe (SHRIMP), whereas all oth er ages are based on conventional U-Pb geochronology. Group 2 rocks are leu cocratic and biotitic varieties of Marshall Metagranite, dated at 1112+/-3 Ma and 1111+/-2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077+/-4 Ma) and quartz-plagioclase gneiss (1077+/-4 Ma); (2) white leucocratic metagranite (1060+/-2 Ma), pink leucocratic metagranite (1059+/-2), biotite granite gneiss (1055 +/- 4 Ma) , and megacrystic metagranite (1055 +/- 2 Ma). Groups 2 and 3 gneisses cont ain only the two younger Proterozoic deformational fabrics. Ages of monazit e, separated from seven samples, indicate growth during both igneous and me tamorphic (thermal) events. However, ages obtained from individual grains m ay be mixtures of different age components, as suggested by backscatter ele ctron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyr oblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenvill e granulite event at about 1035 Ma did not exceed about 750 degrees C. Lack of evidence for 1110 Ma growth of monazite in porphyroblastic granite gnei ss suggests that the Short Hill fault might be a Grenvillian structure that was reactivated in the Paleozoic. The timing of Proterozoic deformations i s constrained by crystallization ages of the gneissic rocks. D1 occurred be tween about 1145 and 1075 Ma (or possibly between about 1145 and 1128 Ma). D2 and D3 must be younger than about 1050 Ma. Ages of Mesoproterozoic grani tic rocks of the northern Blue Ridge are similar to rocks in other Grenvill e terranes of the eastern USA, including the Adirondacks and Hudson Highlan ds. However, comparisons with conventional U-Pb ages of granulite-grade roc ks from the central and southern Appalachians may be specious because these ages may actually be mixtures of ages of cores and overgrowths. (C) 2000 E lsevier Science B.V. All rights reserved.