A determination of H-0 with the class gravitational lens B1608+656. II. Mass models and the Hubble constant from lensing

Citation
Lve. Koopmans et Cd. Fassnacht, A determination of H-0 with the class gravitational lens B1608+656. II. Mass models and the Hubble constant from lensing, ASTROPHYS J, 527(2), 1999, pp. 513-524
Citations number
57
Categorie Soggetti
Space Sciences
Journal title
ASTROPHYSICAL JOURNAL
ISSN journal
0004637X → ACNP
Volume
527
Issue
2
Year of publication
1999
Part
1
Pages
513 - 524
Database
ISI
SICI code
0004-637X(199912)527:2<513:ADOHWT>2.0.ZU;2-M
Abstract
We present mass models of the four-image gravitational lens system B1608 656, based on information obtained through VLBA imaging, VLA monitoring, an d Hubble Space Telescope (HST) WFPC2 and NICMOS imaging. We have determined a mass model for the lens galaxies that reproduces (1) all image positions within the observational errors, (2) two out of three flux-density ratios within about 10% from the observed ratios, and (3) the model time delays wi thin 1% from their observed values, given our best estimate of the Hubble p arameter. Using the time delays determined in a companion paper, we also fi nd that the best isothermal mass model gives H-0 = 59(-6)(+7) km s(-1) Mpc( -1) for Omega(m) = 1 and Omega(Lambda) = 0.0, or H-0 = (65-63)(-6)(+7) km s (-1) Mpc(-1) for Omega(m) = 0.3 and Omega(Lambda) = 0.0-0.7. The statistica l errors indicate the 95.4% (2 sigma) confidence interval. A systematic err or of +/-15 km s(-1) Mpc(-1) is estimated from a 20% (1 sigma) uncertainty in the steepness of radial mass profile. This cosmological determination of H-0 agrees well with determinations from three other gravitational lens sy stems (i.e., B0218 + 357, Q0957 + 561, and PKS 1830-211), Type Ia supernova e, the Sunyaev-Zeldovich effect and local determinations. The current agree ment on H-0-within the 1 sigma statistical errors-from four of five gravita tional lens systems (1) emphasizes the reliability of its determination fro m isolated gravitational lens systems and (2) suggests that a close-to-isot hermal mass profile can describe disk galaxies (e.g., B0218 + 357 and possi bly PKS 1830-211), ellipticals (e.g., B1608 +/- 656), and central cluster e llipticals (e.g., 00957 + 561). The average of H-0 from B0218 + 357, Q0957 + 561, B1608 + 656, and PKS 1830-211, gives H-0(GL) = 69 +/- 7 km s(-1) Mpc (-1) for a flat universe with Omega(m) = 1 or H-0(GL) = 74 +/- 8 km s(-1) M pc(-1) for Omega(m) = 0.3 and Omega(Lambda) = 0.0-0.7. When including PG 11 15 + 080, these values decrease to 64 +/- 11 km s(-1) Mpc(-1) and 68 +/- 13 km s(-1) Mpc(-1), respectively. The errors are the estimated 2 a errors on the average. The Hubble parameter from gravitational lenses seems to agree best with local determinations of H-0 for a low-density universe, under th e assumption that all lenses are nearly isothermal.