MCMC algorithms for two recent Bayesian limited information estimators

Authors
Citation
Cm. Gao et K. Lahiri, MCMC algorithms for two recent Bayesian limited information estimators, ECON LETT, 66(2), 2000, pp. 121-126
Citations number
5
Categorie Soggetti
Economics
Journal title
ECONOMICS LETTERS
ISSN journal
01651765 → ACNP
Volume
66
Issue
2
Year of publication
2000
Pages
121 - 126
Database
ISI
SICI code
0165-1765(200002)66:2<121:MAFTRB>2.0.ZU;2-B
Abstract
Recent developments in Bayesian limited information analysis of simultaneou s equations models, e.g., Chao and Phillips (1998) [Chao, J.C., Phillips, P .C.B., 1998. Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior. Journal of Economet rics 87, 49-86] and Kleibergen and van Dijk (1998) [Kleibergen, F., van Dij k, H.K., 1998. Bayesian simultaneous equation analysis using reduced rank s tructures. Econometric Theory 14, 731-743], provide new choices for empiric al practitioners. This note proposes a "Gibbs within M-H" algorithm to expl ore the non-standard posterior densities resulting from these Bayesian appr oaches and illustrates the procedure with a simple labor supply model from Goldberger (1998) [Goldberger, A.S., 1998. Introductory Econometrics. Harva rd University Press, Cambridge MA]. (C) 2000 Elsevier Science S.A. All righ ts reserved.