Nonexistence of minimal Lagrangian spheres in hyperKahler manifolds

Authors
Citation
K. Smoczyk, Nonexistence of minimal Lagrangian spheres in hyperKahler manifolds, CALC VAR P, 10(1), 2000, pp. 41-48
Citations number
23
Categorie Soggetti
Mathematics
Journal title
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
ISSN journal
09442669 → ACNP
Volume
10
Issue
1
Year of publication
2000
Pages
41 - 48
Database
ISI
SICI code
0944-2669(200001)10:1<41:NOMLSI>2.0.ZU;2-W
Abstract
We prove chat for n > 1 one cannot immerse S-2n as a minimal Lagrangian man ifold into a hyperKahler manifold. More generally we show that any minimal Lagrangian immersion of an orientable closed manifold L-2n into a hyperKahl er manifold H-4n must have nonvanishing second Betti number beta(2) and tha t if beta(2) = 1, L-2n is a Kahler manifold and more precisely a Kahler sub manifold in H-4n w.r.t. one of the complex structures on H-4n. In addition we derive a result for the other Betti numbers.