Localization of eigenfunctions at zero for certain almost periodic operators

Authors
Citation
N. Riedel, Localization of eigenfunctions at zero for certain almost periodic operators, ERGOD TH DY, 19, 1999, pp. 1521-1525
Citations number
6
Categorie Soggetti
Mathematics
Journal title
ERGODIC THEORY AND DYNAMICAL SYSTEMS
ISSN journal
01433857 → ACNP
Volume
19
Year of publication
1999
Part
6
Pages
1521 - 1525
Database
ISI
SICI code
0143-3857(199912)19:<1521:LOEAZF>2.0.ZU;2-Q
Abstract
For every irrational number a! satisfying the property lim(n -->infinity) \ sin pi alpha n \(-1/n) = 1 and for every number beta > 1, it is shown that the difference equation xi+1 + xi(n-1) + 2 beta cos(2 pi alpha n+theta)xi(n) = 0, is an element of Z has a non-trivial solution {xi(n)} satisfying (lim) over bar(\ n \-->infini ty) \xi(n)\(1/\ n \) less than or equal to \beta \(-1) if and only if theta = 2 pi alpha n + 2 pi k +/- pi/2 for some n, k is an element of Z.