The Gruneisen parameter (fl is of considerable importance to Earth scientis
ts because it sets limitations on the thermoelastic properties of the lower
mantle and core. However, there are several formulations of the Gruneisen
parameter in frequent use which nor only give different values for gamma at
ambient pressure but also predict a varying dependence of gamma as a funct
ion of compression. The Gruneisen parameter is directly related to the equa
tion of state (EOS), yet it is often the case that both the form of gamma a
nd the EOS are chosen independently of each other and somewhat arbitrarily.
In this paper we have assessed some of the more common definitions of the
Gruneisen parameter and the EOS, and have applied them to a test material.
OF the EOS considered, when compared against ab initio compressional data f
or hcp-Fe as our exemplar, we find that the fourth order logarithmic and Vi
net relations describe the material with the highest accuracy. Of the expre
ssions for gamma considered it has been suggested, on theoretical grounds,
that the modified free-volume formulation should be expected to give the mo
st realistic description of the thermoelastic behavior of a material. Howev
er, when we use the fourth order logarithmic EOS to obtain the compressiona
l behavior of the various Gruneisen parameters, we find that there is, in f
act, poor agreement between the modified free-volume formulation and the Mi
e-Gruneisen parameter obtained directly from ab initio free energy calculat
ions on hcp-Fe. We conclude that none of the analytical forms of gamma are
sufficiently sophisticated to describe the thermoelastic behavior of real m
aterials with great accuracy, and care must therefore be taken when attempt
ing to model the thermoelastic behavior of solids to ensure that the approp
riate gamma (ideally obtained from experiments or ab initio calculations) a
nd equations of state are used.