Simple and semisimple Lie algebras and codimension growth

Citation
A. Giambruno et al., Simple and semisimple Lie algebras and codimension growth, T AM MATH S, 352(4), 2000, pp. 1935-1946
Citations number
13
Categorie Soggetti
Mathematics
Journal title
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00029947 → ACNP
Volume
352
Issue
4
Year of publication
2000
Pages
1935 - 1946
Database
ISI
SICI code
0002-9947(2000)352:4<1935:SASLAA>2.0.ZU;2-A
Abstract
We study the exponential growth of the codimensions c(n)(L)(B) of a finite dimensional Lie algebra B over a field of characteristic zero. In the case when B is semisimple we show that lim(n-->infinity) (n)root c(n)(L)(B) exis ts and, when F is algebraically closed, is equal to the dimension of the la rgest simple summand of B. As a result we characterize central-simplicity: B is central simple if and only if dim B = lim(n-->infinity) (n)root c(n)(L )(B).